Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38676945

RESUMO

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Assuntos
Evolução Molecular , Perforina , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Perforina/metabolismo , Perforina/genética , Duplicação Gênica , Venenos de Cnidários/genética , Venenos de Cnidários/metabolismo , Filogenia , Família Multigênica
2.
Sci Adv ; 10(11): eadk3870, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478603

RESUMO

The ability of an animal to effectively capture prey and defend against predators is pivotal for survival. Venom is often a mixture of many components including toxin proteins that shape predator-prey interactions. Here, we used the sea anemone Nematostella vectensis to test the impact of toxin genotypes on predator-prey interactions. We developed a genetic manipulation technique to demonstrate that both transgenically deficient and a native Nematostella strain lacking a major neurotoxin (Nv1) have a reduced ability to defend themselves against grass shrimp, a native predator. In addition, secreted Nv1 can act indirectly in defense by attracting mummichog fish, which prey on grass shrimp. Here, we provide evidence at the molecular level of an animal-specific tritrophic interaction between a prey, its antagonist, and a predator. Last, this study reveals an evolutionary trade-off, as the reduction of Nv1 levels allows for faster growth and increased reproductive rates.


Assuntos
Anêmonas-do-Mar , Peçonhas , Animais , Reprodução , Evolução Biológica , Neurotoxinas/genética , Anêmonas-do-Mar/genética , Comportamento Predatório/fisiologia
3.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092765

RESUMO

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Filogenia , Sintenia/genética , Regulação da Expressão Gênica , Genoma/genética
4.
Cell Rep ; 42(9): 113072, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676763

RESUMO

An ancient evolutionary innovation of a novel cell type, the stinging cell (cnidocyte), appeared >600 million years ago in the phylum Cnidaria (sea anemones, corals, hydroids, and jellyfish). A complex bursting nano-injector of venom, the cnidocyst, is embedded in cnidocytes and enables cnidarians to paralyze their prey and predators, contributing to this phylum's evolutionary success. In this work, we show that post-transcriptional regulation by a pan-cnidarian microRNA, miR-2022, is essential for biogenesis of these cells in the sea anemone Nematostella vectensis. By manipulation of miR-2022 levels in a transgenic reporter line of cnidocytes, followed by transcriptomics, single-cell data analysis, prey paralysis assays, and cell sorting of transgenic cnidocytes, we reveal that miR-2022 enables cnidocyte biogenesis in Nematostella, while exhibiting a conserved expression domain with its targets in cnidocytes of other cnidarian species. Thus, here we revealed a functional basis to the conservation of one of nature's most ancient microRNAs.

5.
PLoS Biol ; 21(6): e3002152, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285339

RESUMO

Genome integrity in animals depends on silencing of mobile elements by Piwi-interacting RNAs (piRNAs). A new study in this issue of PLOS Biology reveals recent evolutionary losses of key piRNA biogenesis factors in flies, highlighting adaptability by rapid shift to alternative piRNA biogenesis strategies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , RNA de Interação com Piwi , RNA Interferente Pequeno/genética , Proteínas de Drosophila/genética , Evolução Biológica
6.
Nat Commun ; 14(1): 3506, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316475

RESUMO

Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.


Assuntos
Proteínas de Peixes , Oryzias , Masculino , Animais , Proteínas de Peixes/genética , Sêmen , Peixe-Zebra/genética , Células Germinativas , Proteínas de Membrana , Interações Espermatozoide-Óvulo
7.
Nat Ecol Evol ; 7(2): 182-193, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635343

RESUMO

Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.


Assuntos
Drosophila melanogaster , Viroses , Animais , Imunidade Inata , Vertebrados , Antivirais
8.
Nat Commun ; 14(1): 249, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646703

RESUMO

Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Venenos de Cnidários/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Fenótipo
9.
Commun Biol ; 6(1): 17, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609696

RESUMO

Ion channels of the DEG/ENaC family share a similar structure but serve strikingly diverse biological functions, such as Na+ reabsorption, mechanosensing, proton-sensing, chemosensing and cell-cell communication via neuropeptides. This functional diversity raises the question of the ancient function of DEG/ENaCs. Using an extensive phylogenetic analysis across many different animal groups, we found a surprising diversity of DEG/ENaCs already in Cnidaria (corals, sea anemones, hydroids and jellyfish). Using a combination of gene expression analysis, electrophysiological and functional studies combined with pharmacological inhibition as well as genetic knockout in the model cnidarian Nematostella vectensis, we reveal an unanticipated role for a proton-sensitive DEG/ENaC in discharge of N. vectensis cnidocytes, the stinging cells typifying all cnidarians. Our study supports the view that DEG/ENaCs are versatile channels that have been co-opted for diverse functions since their early occurrence in animals and that respond to simple and ancient stimuli, such as omnipresent protons.


Assuntos
Anêmonas-do-Mar , Animais , Canais Iônicos/genética , Filogenia , Prótons , Anêmonas-do-Mar/genética
10.
Toxins (Basel) ; 14(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355975

RESUMO

Among the medically most important snakes in the world, the species belonging to the genus Daboia have been attributed to the highest number of human envenomings, deaths and disabilities. Given their significant clinical relevance, the venoms of Russell's vipers (D. russelii and D. siamensis) have been the primary focus of research. In contrast, the composition, activity, ecology and evolution of venom of its congener, the Palestine viper (D. palaestinae), have remained largely understudied. Therefore, to unravel the factors responsible for the enhanced medical relevance of D. russelii in comparison to D. palaestinae, we comparatively evaluated their venom proteomes, biochemical activities, and mortality and morbidity inflicting potentials. Furthermore, the synthesis and regulation of venom in snakes have also remained underinvestigated, and the relative contribution of each venom gland remains unclear. We address this knowledge gap by sequencing the tissue transcriptomes of both venom glands of D. palaestinae, and comparatively evaluating their contribution to the secreted venom concoction. Our findings highlight the disparity in the venom composition, function and toxicities of the two Daboia species. We also show that toxin production is not partitioned between the two venom glands of D. palaestinae.


Assuntos
Daboia , Mordeduras de Serpentes , Animais , Humanos , Venenos de Víboras/química , Proteoma , Antivenenos
11.
Front Cell Dev Biol ; 10: 974168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211453

RESUMO

Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.

12.
Gigascience ; 112022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35640874

RESUMO

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Assuntos
Proteômica , Peçonhas , Animais , Pesquisa , Serpentes/genética , Transcriptoma , Peçonhas/química , Peçonhas/genética
13.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289745

RESUMO

While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a 'plant-specific' Dicer partner, in the metazoan phylum Cnidaria, challenges the view that miRNAs evolved convergently in animals and plants. Here, we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La by morpholinos resulted in metamorphosis arrest in Nematostella embryos and a significant reduction in levels of most miRNAs. Further, meta-analysis of morphants of miRNA biogenesis components, like Dicer1, shows clustering of their miRNA profiles with Hyl1La morphants. Strikingly, immunoprecipitation of Hyl1La followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. This was complemented by an in vitro binding assay of Hyl1La to synthetic precursor miRNA. Altogether, these results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis and indicate early emergence of the miRNA system before plants and animals separated.


In both animals and plants, small molecules known as micro ribonucleic acids (or miRNAs for short) control the amount of proteins cells make from instructions encoded in their DNA. Cells make mature miRNA molecules by cutting and modifying newly-made RNA molecules in two stages. Some of the components animals and plants utilize to make and use miRNAs are similar, but most are completely different. For example, in plants an enzyme known as Dicer cuts newly made RNAs into mature miRNAs with the help of a protein called HYL1, whereas humans and other animals do not have HYL1 and Dicer works with alternative partner proteins, instead. Therefore, it is generally believed that miRNAs evolved separately in animals and plants after they split from a common ancestor around 1.6 billion years ago. Recent studies on sea anemones and other primitive animals challenge this idea. Proteins similar to HYL1 in plants have been discovered in sea anemones and sponges, and sea anemone miRNAs show several similarities to plant miRNAs including their mode of action. However, it is not clear whether these HYL1-like proteins work in the same way as their plant counterparts. Here, Tripathi, Admoni et al. investigated the role of the HYL1-like protein in sea anemones. The experiments found that this protein was essential for the sea anemones to make miRNAs and to grow and develop properly. Unlike HYL1 in plants ­ which is involved in both stages of processing newly-made miRNAs into mature miRNAs ­ the sea anemone HYL1-like protein only helped in the second stage to make mature miRNAs from intermediate molecules known as precursor miRNAs. These findings demonstrate that some of the components plants use to make miRNAs also perform similar roles in sea anemones. This suggests that the miRNA system evolved before the ancestors of plants and animals separated from each other. Questions for future studies will include investigating how plants and animals evolved different miRNA machinery, and why sponges and jellyfish have HYL1-like proteins, whereas humans and other more complex animals do not.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Anêmonas-do-Mar , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
14.
Front Immunol ; 13: 1016097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618389

RESUMO

Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis. E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Resposta ao Choque Térmico , Temperatura , Espécies Reativas de Oxigênio
16.
Mol Biol Evol ; 38(10): 4546-4561, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34180999

RESUMO

Animals evolved a broad repertoire of innate immune sensors and downstream effector cascades for defense against RNA viruses. Yet, this system varies greatly among different bilaterian animals, masking its ancestral state. In this study, we aimed to characterize the antiviral immune response of the cnidarian Nematostella vectensis and decipher the function of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) known to detect viral double-stranded RNA (dsRNA) in bilaterians but activate different antiviral pathways in vertebrates and nematodes. We show that polyinosinic:polycytidylic acid (poly(I:C)), a mimic of long viral dsRNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), triggers a complex antiviral immune response bearing features distinctive for both vertebrate and invertebrate systems. Importantly, a well-characterized agonist of the vertebrate RIG-I receptor does not induce a significant transcriptomic response that bears signature of the antiviral immune response, which experimentally supports the results of a phylogenetic analysis indicating clustering of the two N. vectensis RLR paralogs (NveRLRa and NveRLRb) with MDA5. Furthermore, the results of affinity assays reveal that NveRLRb binds poly(I:C) and long dsRNA and its knockdown impairs the expression of putative downstream effector genes including RNA interference components. Our study provides for the first time the functional evidence for the conserved role of RLRs in initiating immune response to dsRNA that originated before the cnidarian-bilaterian split and lay a strong foundation for future research on the evolution of the immune responses to RNA viruses.


Assuntos
Antivirais , Cnidários , Animais , Imunidade Inata , Filogenia , RNA de Cadeia Dupla/genética
17.
Trends Genet ; 37(7): 606-607, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858672

RESUMO

A recent study by Cosby et al. sheds light on the role of transposons in the adaptive evolution of their hosts. These genetic elements were thought to be largely deleterious. However, when coupled with alternative splicing, there appears to be an exponential increase in the diversity of proteins encoded, which display novel functions and are conserved by natural selection.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Seleção Genética/genética , Transcrição Gênica/genética , Adaptação Fisiológica/genética , Processamento Alternativo/genética , Proteínas/genética
18.
Gigascience ; 10(3)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764467

RESUMO

Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144-European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level.


Assuntos
Peçonhas
19.
Proc Biol Sci ; 288(1945): 20203169, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622129

RESUMO

MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.


Assuntos
Antozoários , MicroRNAs , Anêmonas-do-Mar , Animais , Antozoários/genética , Sequência de Bases , MicroRNAs/genética , Anêmonas-do-Mar/genética , Análise de Sequência de RNA
20.
Evodevo ; 12(1): 1, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413660

RESUMO

Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA